

Hemoglobin Evolution Pathway

Oxyhemoglobin → Deoxyhemoglobin → Intracellular Methemoglobin → Extracellular Methemoglobin → Hemosiderin

- **Fe²⁺** (ferrous iron): Oxyhemoglobin → Deoxyhemoglobin
- **Fe³⁺** (ferric iron): Methemoglobin → Hemosiderin formation
- Location matters: Intracellular vs extracellular compartmentalization

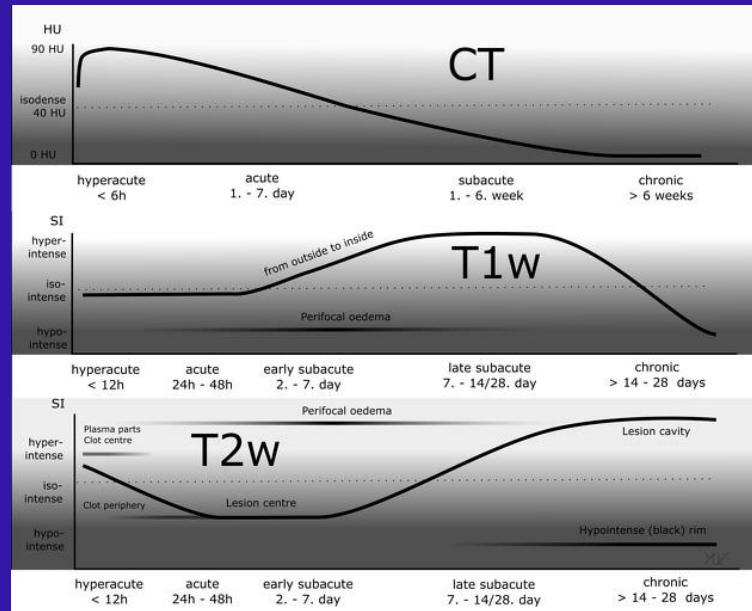
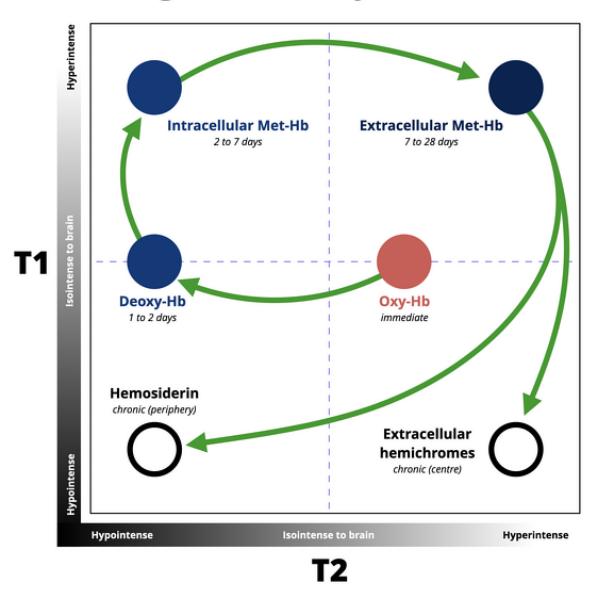
MRI Sequences

- T1:
 - Best for identifying methemoglobin (subacute hemorrhage) via T1 shortening; less sensitive for early deoxyhemoglobin or tiny chronic deposits.
- T2:
 - Shows the classic transition from bright (hyperacute) to dark (acute/early subacute) back to bright (late subacute/chronic), but can be nonspecific and influenced by edema and CSF.
- GRE (2D T2*):
 - Sensitive to susceptibility from deoxyhemoglobin, methemoglobin, and hemosiderin, but less sensitive and lower spatial resolution than SWI for microbleeds.
- SWI (3D T2* with phase):
 - Maximally sensitive to susceptibility; detects more and larger hemorrhagic foci than GRE and shows characteristic mixed high/low signal due to both T2* and T1 “shine-through.”

Stages and hemoglobin forms

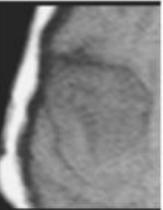
Acute/Hyperacute

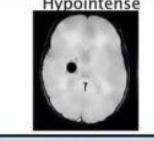
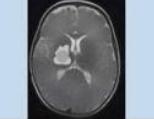
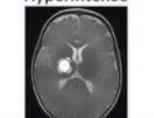
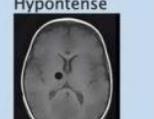
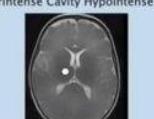
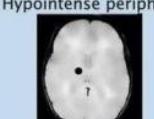
- **Hyperacute** (< 24 h): Predominantly intracellular oxyhemoglobin; blood is still intravascular or just extravasated, with high water content and minimal deoxyhemoglobin. This yields near-normal T1 and bright T2, often with surrounding vasogenic edema that is hyperintense on T2/FLAIR.
- **Acute** (~ 1–3 days): Intracellular deoxyhemoglobin forms as oxygen tension falls, producing strong T2* susceptibility effects. T2 signal drops, while T1 remains iso–hypointense, and GRE/SWI show marked hypointensity.



Subacute phases

- **Early subacute** (~ 3–7 days): Hemoglobin is converted to intracellular methemoglobin, which has pronounced T1 shortening. The hematoma becomes T1 bright but remains T2 dark because RBC membranes are intact and susceptibility effects persist.
- **Late subacute** (~ 7–28 days): RBC membranes lyse, releasing extracellular methemoglobin, which reduces susceptibility effects and increases both T1 and T2 signal. The hematoma appears hyperintense on T1 and T2, often with a developing hypointense hemosiderin rim on GRE/SWI.

Chronic stage


- **Chronic** (> 1 month): Methemoglobin is further degraded to hemosiderin and ferritin within macrophages at the margins of the cavity. This yields a dark hemosiderin rim (blooming on GRE/SWI) surrounding a region of encephalomalacia/CSF-like signal that is T1 hypointense and T2 hyperintense








MRI signal intensity of hematomas

Mnemonic	Abnormal	T1	T2
It Be	Hyperacute	I	B
IdDy	Acute	I	D
BiDdy	Early Subacute	B	D
BaBy	Late Subacute	B	B
DooDoo	Chronic	D	D

Stage	Age	Compartment	Hemoglobin
Hyperacute	<24 Hours	Intracellular	Oxyhemoglobin
Acute	1-3 Days	Intracellular	Deoxyhemoglobin
Early Subacute	>3 Days	Intracellular	Methemoglobin
Late Subacute	>7 Days	Extracellular	Methemoglobin
Chronic	>14 Days	Extracellular	Hemosiderin

Hemoglobin stage	T1W1	T2W1	T2* GRE	Comments
Hyperacute				T1: slightly hypointense/ isointense T2/GRE: hyperintense with irregular thin peripheral rim of hypointensity on T2; more pronounced on GRE
<6 hours				
Oxyhemoglobin				
Acute				T1: isointense or slight hypointense=(marked T2 susceptibility affecting T1 image) Note thin rim of hyperintensity reflecting conversion to intracellular methemoglobin.
7-72 hours				T2/GRE: marked hypointensity
Deoxyhemoglobin				
Early subacute				T1: hyperintensity. High signal starts at periphery then converges radially inward.
3-7 days				T2/GRE: hypointensity Note area of high signal representing edema surrounding clot.
Intracellular methemoglobin				
Late subacute				T1: persistent hyperintensity
1-4 weeks				T2/GRE: hyperintense Note, the appearance of a hypointense rim on T2: more pronounced on GRE
Extracellular methemoglobin				
Chronic				T1: hypointensity=(T2 susceptibility affecting T1 image)
Months-years				TS/GRE: hypointensity Note, the presence of central hyperintensity reflecting methemoglobin may still be present.
Hemosiderin/ ferritin				

INTRACRANIAL HEMORRHAGE	T1 WI	T2 WI	T2 GRE
Hyperacute			
Acute (12-48 h)			
Early Subacute(72 h)			
Late Subacute (3-20 d)			
Chronic (9 sem)			

Stage	Approx age	Dominant blood product	T1 signal	T2/FLAIR signal	GRE/SWI signal	Notes
Hyperacute	< 24 h	Intracellular oxyhemoglobin	Isointense to mildly hyperintense ^{pmc.ncbi.nlm.nih+1}	Hyperintense relative to brain, with surrounding hyperintense edema ^{pmc.ncbi.nlm.nih+2}	Variable; may show thin hypointense rim if deoxyhemoglobin starts to form ^{pmc.ncbi.nlm.nih+2}	High water content; clot not fully formed; CT may still be isodense early. ^{pmc.ncbi.nlm.nih+1}
Acute	~1–3 days (often 12 h–2–3 d)	Intracellular deoxyhemoglobin	Isointense to hypointense ^{pmc.ncbi.nlm.nih+2}	Hypointense core with hyperintense vasogenic edema ^{pmc.ncbi.nlm.nih+2}	Markedly hypointense (blooming) ^{mr/questions+2}	Strong T2* susceptibility; GRE/SWI very sensitive for detection. ^{mr/questions+1}
Early subacute	~3–7 days	Intracellular methemoglobin	Hyperintense (T1 shortening) ^{pmc.ncbi.nlm.nih+2}	Hypointense or mixed, often with peripheral hyperintense edema ^{stroke-manual+2}	Hypointense (persistent susceptibility from intracellular methemoglobin) ^{thieme-connect+1}	Classic T1-bright, T2-dark pattern for early subacute parenchymal hematoma. ^{stroke-manual+1}
Late subacute	~7–28 days	Extracellular methemoglobin	Hyperintense ^{pmc.ncbi.nlm.nih+1}	Hyperintense; may be heterogeneous with surrounding edema ^{pmc.ncbi.nlm.nih+2}	Variable; can be iso- to hyperintense centrally with hypointense rim as hemosiderin develops ^{stroke-manual+2}	RBC lysis releases methemoglobin; susceptibility less in center, more at rim. ^{pmc.ncbi.nlm.nih+1}
Chronic (early)	> 1 month to ~2 months	Peripheral hemosiderin/ferritin with central serum/CSF ^{pmc.ncbi.nlm.nih+2}	Center iso- to hypointense (encephalomalacia/CSF-like); rim hypointense ^{stroke-manual+1}	Center hyperintense (gliosis/CSF); dark hypointense rim ^{stroke-manual+1}	Prominent hypointense rim with blooming; microbleeds appear as small dark foci ^{thieme-connect+2}	Volume loss and gliosis; SWI best for detecting small chronic hemosiderin deposits. ^{thieme-connect+2}
Chronic (late)	Months–years	Residual nonparamagnetic hemochromes, encephalomalacia ^{stroke-manual+1}	Hypointense parenchymal loss, often similar to CSF; rim persists ^{stroke-manual+1}	Hyperintense encephalomalacia with persistent dark rim ^{stroke-manual+1}	Stable hypointense rim or scattered microbleeds ^{thieme-connect+2}	Represents final stage with parenchymal atrophy and stable hemosiderin staining. ^{stroke-manual+1}

Hyperacute Stage (< 24 hours)

Intracellular Oxyhemoglobin (Fe^{2+})

- **Biochemistry:** RBCs intact with normal oxygenated hemoglobin
- **Mechanism:** High local O_2 tension maintains Fe^{2+} ; antioxidant systems prevent oxidation
- **MRI:** T1 iso/mildly bright | T2 bright (high water) | GRE variable
- **Clinical:** Clot forming; hyperintense edema rim on T2/FLAIR

Acute Stage (1–3 days)

Intracellular Deoxyhemoglobin (Fe^{2+})

- **Biochemistry:** O_2 dissociates; Fe^{2+} remains but hemoglobin conformation changes
- **Mechanism:** RBC membranes intact; paramagnetic centers exposed, causing strong T2^* effects
- **MRI:** T1 iso/dark | **T2 markedly dark** | **GRE/SWI blooming**
- **Best sequence:** GRE or SWI for acute blood detection

Early Subacute Stage (3–7 days)

Intracellular Methemoglobin (Fe^{3+} , RBCs intact)

- **Biochemistry:** Deoxyhemoglobin auto-oxidizes to Fe^{3+} methemoglobin
- **Mechanism:** Methemoglobin reductase overwhelmed; Fe^{3+} causes T1 shortening
- **MRI:** **T1 bright** | T2 dark (intracellular) | GRE dark (blooming)
- **Classic pattern:** T1 hyperintense, T2 hypointense = parenchymal hematoma

Late Subacute Stage (7–28 days)

Extracellular Methemoglobin (Fe³⁺, RBCs lysed)

- **Biochemistry:** RBC membranes break down; methemoglobin released into fluid
- **Mechanism:** Water access increases, reduces field inhomogeneity → T2 lengthens
- **MRI: T1 bright | T2 bright | GRE variable** (iso to mildly dark)
- **Developing rim:** Hemosiderin deposits at periphery (dark on GRE/SWI)

Chronic Stage (> 1 month)

Hemosiderin & Ferritin (Fe³⁺ storage); Encephalomalacia

- **Biochemistry:** Microglia/macrophages phagocytose debris; iron stored in ferritin/hemosiderin
- **Mechanism:** Clustered Fe³⁺ creates strong local susceptibility; parenchymal loss evident
- **MRI:** T1 iso/dark center | T2 bright center | **Dark hemosiderin rim on GRE/SWI**
- **SWI advantage:** Best for detecting microbleeds and chronic hemosiderin

Biochemistry Summary

Stage	Iron State	RBC Integrity	Paramagnetism
Hyperacute	Fe ²⁺	Intact	Minimal
Acute	Fe ²⁺	Intact	Strong T2*
Early Subacute	Fe ³⁺	Intact	Strong T1 + T2*
Late Subacute	Fe ³⁺	Lysed	Dispersed Fe ³⁺
Chronic	Fe ³⁺	Ingested	Storage foci